Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells.
نویسندگان
چکیده
The current study was aimed to develop a targeted dendrimer formulation of 3, 4-difluorobenzylidene curcumin (CDF) and evaluate its potential in CD44 targeted therapy for pancreatic cancer. Using amine terminated fourth generation poly(amidoamine) (PAMAM) dendrimer nanocarrier and hyaluronic acid (HA) as a targeting ligand, we engineered a CD44-targeted PAMAM dendrimer (HA-PAMAM) formulation of CDF. The resulting dendrimer nanosystem (HA-PAMAM-CDF) had a particle size and surface charge of 9.3 ± 1.5 nm and -7.02 ± 9.53 mV, respectively. When CD44 receptor overexpressing MiaPaCa-2 and AsPC-1 human pancreatic cancer cells were treated with HA-PAMAM-CDF, a dose-dependent cytotoxicity was observed. Furthermore, blocking the CD44 receptors present on the MiaPaCa-2 cells using free excess soluble HA prior to treatment with HA-PAMAM-CDF nano-formulation resulted in 1.71 fold increase in the IC50 value compared to non-targeted formulation (PAMAM-CDF), confirming target specificity of HA-PAMAM-CDF. Additionally, HA-PAMAM-CDF formulation when compared to PAMAM-CDF, displayed higher cellular uptake in MiaPaCa-2 cancer cell lines as shown by fluorescence studies. In summary, the novel CD44 targeted dendrimer based nanocarriers appear to be proficient in mediating site-specific delivery of CDF via CD44 receptors, with an improved therapeutic margin and safety.
منابع مشابه
Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition
Curcumin (CUR) is a unique natural compound with promising anticancer and anti-inflammatory activities. However, the therapeutic efficacy of curcumin was challenged in clinical trials, mostly due to its low bioavailability, rapid metabolism, and elimination. We designed a nanodrug form of curcumin, which makes it stable and substantially enhances cellular permeability and anticancer activity at...
متن کاملHyaluronic Acid Decorated Nanomicelles Loaded with a Potent Anticancer Flavonoid Analogue to CD44 Expressing Stem-Like Pancreatic Cancer Cells
CD44 Expressing Stem-Like Pancreatic Cancer Cells P. Kesharwani, H. O. Alsaab, S. Padhye, F. H. Sarkar, A. K. Iyer Wayne State University, Pune University Purpose Cancer stem-like cells (CSLCs) play a critical role in acquiring multidrug resistant (MDR) phenotypes. It has been well established that pancreatic cancer stem cells overexpress CD44 receptors (a target of hyaluronic acid; HA). We thu...
متن کاملHyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells
Glioblastoma Multiforme (GBM) is a highly prevalent and deadly brain malignancy characterized by poor prognosis and restricted disease management potential. Despite the success of nanocarrier systems to improve drug/gene therapy for cancer, active targeting specificity remains a major hurdle for GBM. Additionally, since the brain is a multi-cell type organ, there is a critical need to develop a...
متن کاملHyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy
Multiple carcinomas including breast, ovarian, colon, lung and stomach cancer, overexpress the hyaluronic acid (HA) receptor, CD44. Overexpression of CD44 contributes to key cancer processes including tumor invasion, metastasis, recurrence, and chemoresistance. Herein, we devised novel targeted nanoparticles (NPs) for delivery of anticancer chemotherapeutics, comprised of self-assembling Mailla...
متن کاملHyaluronic acid–nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo
Carrier-mediated drug delivery systems are promising therapeutics for targeted delivery and improved efficacy and safety of potent cytotoxic drugs. Nimesulide is a multifactorial cyclooxygenase 2 nonsteroidal anti-inflammatory drug with analgesic, antipyretic and potent anticancer properties; however, the low solubility of nimesulide limits its applications. Drugs conjugated with hyaluronic aci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 136 شماره
صفحات -
تاریخ انتشار 2015